Recycling solutions and more...

Robust and reliable scrap processing systems

Stationary Scrap shears

Modern press shears for heavy construction scrap

Precise shear cut

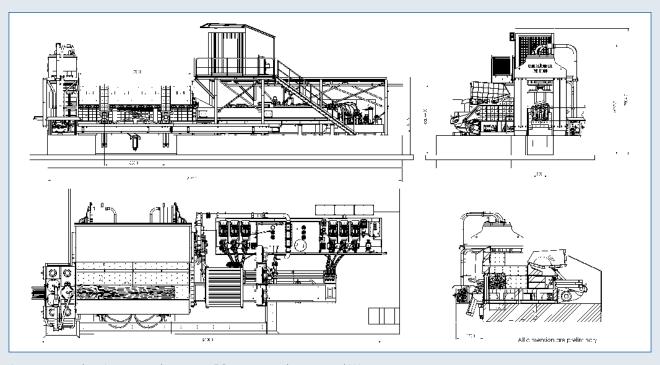
Reliable and longlife shearing performance by column guides

The hydraulic ORM press shears are based on the basic Oberländer design, which has been tried and tested for more than 50 years, with column guidance of the shear slider which ensures precise adherence to the cutting tolerance between the upper and lower blades. The scrap shears are manufactured in a torsion-resistant welded construction, which enables installation without anchoring to the foundation and correspondingly low foundation costs.

With the help of a hydraulically operated pre-filling trough (Fig. 3), scrap can be loaded while the shear is producing. This considerably reduces the loading time and significantly increases production. The mechanically machined press box enables precise movement of the compactors and fast, jam-free pre-compaction of the material.

Large-volume scrap is compacted effectively and easily with the help of the side compactor and a powerful press cover that extends over approx. 2/3 of the press box width. The particularly long downholder guides allow the scrap precompacted by the side compactor to be moved against the lowered downholder so that bales can also be produced with the shears.

Generously dimensioned hydraulic pipe and valve cross-sections allow high hydraulic efficiency and low turbulence losses, which results in high productivity and a low heat generation.


- 1 1100 t Oberländer scrap shear, type PS 1100
- 2 Front view, 950 t shear, type PS 950
- *3* View into the prefilling box
- 4 View of the shear slider with column guides

Technical data

	PS 700	PS 950	PS 1100	PS 1400	PS 1700
Cutting force[kN]	6.870	9.250	11.100	13.740	16.630
Press bed length [mm]	6.000	7.000	7.000	8.000	8.000
Press bed width [mm]	2.300	2.350	2.350	2.500	2.500
Press bed depth [mm]	1.200	1.200	1.400	1.600	1.600
Cutting width [mm]	710	950	950	950-1250	1450
Strokes per minute	4 - 6	4 - 6	4 - 5	4 - 5	4 - 5
Downholder force [kN]	1.700	3.350	4.180	5.560	6.870
Lid force [kN]	1x 2.470	2x 1.710	2x 1.710	4x 1.710	4x 2.470
Side compactor force [kN]	1x 2.470	2x 2.470	2x 3.360	2x 3.360	2x 4.840
Pusher force [kN]	1.710	1.710	1.710	1.710	2.470
Cutting capacity t/hour*	15-20	25-35	28-40	32-45	35-50
Main drive [kW]	2x 75	3/4x90	4/5x90	5/6x90	6/7/8x90
Total weight [t]	130	220	250	350	450

^{*} depends on the type of scrap and the cutting length

Recycling solutions and more...

